A bird drops a stick to the ground from a height of 80 feet. The equation 0=−16x^2+64x+80 gives the number of seconds that have passed when it hits the ground. After about how many seconds did the stick hit the ground?

I need an answer pretty quickly, and I can't figure out the answer. The answer should look like this, x= so and so

Thanks!!!!!!!

Respuesta :

Answer:

x = -1 and 5

Step-by-step explanation:

Solve:  [tex]-16x^2+64x+80=0[/tex]

Factor out common value of 16:

[tex]\implies 16(-x^2+4x+5)=0[/tex]

Divide both sides by 16:  

[tex]\implies -x^2+4x+5=0[/tex]

Change signs:

[tex]\implies x^2-4x-5=0[/tex]

Break expression into groups:

[tex]\implies x^2+x-5x-5=0[/tex]

[tex]\implies( x^2+x)-(5x+5)=0[/tex]

Factor parentheses:

[tex]\implies x(x+1)-5(x+1)=0[/tex]

Factor out common term [tex]x+1[/tex]:

[tex]\implies (x+1)(x-5)=0[/tex]

Therefore,

[tex]x+1=0[/tex]  and  [tex]x-5=0[/tex]

So [tex]x=-1[/tex] and [tex]x=5[/tex]

[tex]\\ \tt\hookrightarrow -16x^2+64x+80=0[/tex]

[tex]\\ \tt\hookrightarrow 16x^2-64x-80=[/tex]

[tex]\\ \tt\hookrightarrow 16(x^2-4x-5)=0[/tex]

  • Cancel 16

[tex]\\ \tt\hookrightarrow x^2-4x-5=0[/tex]

[tex]\\ \tt\hookrightarrow x^2-5x+x-5=0[/tex]

[tex]\\ \tt\hookrightarrow x(x-5)+1(x-5)=0[/tex]

[tex]\\ \tt\hookrightarrow (x+1)(x-5)=0[/tex]

  • x=-1,5
ACCESS MORE