Respuesta :
Answer:
11.48913
Step-by-step explanation:
A = V
B = X
C = D
Calculates b, ∠A, and ∠B based on given c, a, and ∠C.
∠A = arcsin [tex](\frac{a·sin(C)}{c})[/tex] = 0.33984 rad = 19.471° = 19°28'16"
∠B = 180° - C - A = 1.23096 rad = 70.529° = 70°31'44"
b = [tex]\frac{c·sin(B)}{sin(C)}[/tex] = 11.31371 = 8[tex]\sqrt{2}[/tex]
Area = [tex]\frac{ab·sin(C)}{2\\}[/tex] = 22.62742
Perimeter p = a + b + c = 27.31371
Semiperimeter s = [tex]\frac{a + b +c}{2}[/tex] = 13.65685
Height ha = [tex]\frac{2×Area}{a}[/tex] = 11.31371
Height hb = [tex]\frac{2×Area}{b}[/tex] = 4
Height hc = [tex]\frac{2×Area}{c}[/tex]= 3.77124
Median ma = [tex]\sqrt{(a/2)2 + c2 - ac·cos(B)}[/tex] = 11.48913
Median mb = [tex]\sqrt{(b/2)2 + a2 - ab·cos(C)}[/tex] = 6.9282
Median mc = [tex]\sqrt{√(c/2)2 + b2 - bc·cos(A)}[/tex] = 6
Inradius r = [tex]\frac{Area}{s}[/tex] = 1.65685
Circumradius R = [tex]\frac{a}{2sin(A)}[/tex] = 6