Answer:
[tex]sin(G)=\frac{21}{35}[/tex]
Step-by-step explanation:
Solve for line segment CA:
[tex]a^2+b^2=c^2\\\\14^2+(CA)^2=17.5^2\\\\196+(CA)^2=306.25\\\\(CA)^2=110.25\\\\CA=10.5[/tex]
Determine sin(G) which is similar to sin(T)
[tex]sin(G)=\frac{opposite}{hypotenuse}\\ \\sin(G)=\frac{10.5}{17.5}\\ \\G=sin^{-1}(\frac{10.5}{17.5})\\ \\G\approx36.87^\circ[/tex]
Therefore, [tex]sin(G)=\frac{10.5}{17.5}=\frac{21}{35}[/tex] where [tex]m\angle G=36.87^\circ[/tex]