The value of the force, F₀, at equilibrium is equal to the horizontal
component of the tension in string 2.
Response:
Given:
The weight of the rod = The sum of the vertical forces in the strings
Therefore;
M·g = T₂·cos(37°) + T₁
The weight of the rod is at the middle.
Taking moment about point (2) gives;
M·g × L = T₁ × 2·L
Therefore;
[tex]T_1 = \mathbf{\dfrac{M \cdot g}{2}}[/tex]
Which gives;
[tex]M \cdot g = \mathbf{T_2 \cdot cos(37 ^{\circ})+ \dfrac{M \cdot g}{2}}[/tex]
[tex]T_2 = \dfrac{M \cdot g - \dfrac{M \cdot g}{2}}{cos(37 ^{\circ})} = \mathbf{\dfrac{M \cdot g}{2 \cdot cos(37 ^{\circ})}}}[/tex]
F₀ = T₂·sin(37°)
Which gives;
[tex]F_0 = \dfrac{M \cdot g \cdot sin(37 ^{\circ})}{2 \cdot cos(37 ^{\circ})}} = \dfrac{M \cdot g \cdot tan(37 ^{\circ})}{2} \approx \mathbf{0.377 \cdot M \cdot g}[/tex]
Learn more about equilibrium of forces here:
https://brainly.com/question/6995192