Answer:
25[tex]z^{4}[/tex] + 30z³ + 29z² + 12z + 4
Step-by-step explanation:
(5z² + 3z + 2)²
= (5z² + 3z + 2)(5z² + 3z + 2)
Each term in the second factor is multiplied by each term in the first factor, that is
5z²(5z² + 3z + 2) + 3z(5z² + 3z + 2) + 2(5z² + 3z + 2) ← distribute parenthesis
= 25[tex]z^{4}[/tex] + 15z³ + 10z² + 15z³ + 9z² + 6z + 10z² + 6z + 4 ← collect like terms
= 25[tex]z^{4}[/tex] + 30z³ + 29z² + 12z + 4