We could derive this , as ;
[tex]\sf \longrightarrow Work = F s cos\theta \\ [/tex]
[tex]\sf \longrightarrow Work = (ma)(s)(cos0^o)\\[/tex]
[tex]\sf \longrightarrow\pink{ Work = m \ a \ s } \dots (i)[/tex]
[tex]\sf \longrightarrow 2as = v^2 -u^2[/tex]
where the symbols have their usual meaning.
[tex]\sf \longrightarrow as =\dfrac{1}{2}(v - u)^2\\ [/tex]
Multiplying both sides by m,
[tex]\sf \longrightarrow mas = \dfrac{m}{2}(v-u)^2 [/tex]
Now from equation (i),
[tex]\sf \longrightarrow Work = \underbrace{\dfrac{1}{2}mv^2-\dfrac{1}{2}mu^2} [/tex]
Above term on RHS is change in the Kinetic energy , therefore ,
[tex]\sf \longrightarrow \underline{\boxed{\bf Work = \Delta Energy_{(Kinetic)} }}[/tex]