Try this option:
1) the rule 1: if f(x)=u(x)*v(x), then f'(x)=u'(x)*v(x)+u(x)*v'(x), where u(x)=x³, v(x)=ln(cos²x);
2) the rule 2: if f(x)=u(v(x)), then f'(x)=u'(v(x))*v'(x), where u(v(x))=ln(cos²x), v(x)=cos²x;
3) according to the rules above:
f'(x)=(x³)'*ln(cos²x)+x³*(ln(cos²x))';
[tex]f`(x)=3x^2ln(cos^2x)+x^3*\frac{1}{cos^2x}*(-2sinxcosx)=3x^2ln(cos^2x)-2x^3tanx.[/tex]
Answer: 3x²ln(cos²x)-2x³tanx.