Respuesta :
You can use the properties of logarithm to derive the simplified form of the given expression.
The simplification of the given expression requires the given below properties of logarithm
- [tex]log_a(b^c) = c \times log_a(b)\\\\[/tex]
- [tex]log_b(b) = 1[/tex]
What is logarithm and some of its useful properties?
When you raise a number with an exponent, there comes a result.
Lets say you get
[tex]a^b = c[/tex]
Then, you can write 'b' in terms of 'a' and 'c' using logarithm as follows
- [tex]b = log_a(c)[/tex]
Some properties of logarithm are:
[tex]log_a(b) = log_a(c) \implies b = c\\\\\log_a(b) + log_a(c) = log_a(b \times c)\\\\log_a(b) - log_a(c) = log_a(\frac{b}{c})\\\\log_a(b^c) = c \times log_a(b)\\\\log_b(b) = 1[/tex]
Using the above properties, to get to the simplified form of the given expression
The given expression is
[tex]log_b(b^{x+y})[/tex]
Using the property [tex]log_a(b^c) = c \times log_a(b)\\\\[/tex], we get
[tex]log_b(b^{x+y}) = (x+y)\times log_b(b)[/tex]
Using the property [tex]log_b(b) = 1[/tex], we get
[tex]log_b(b^{x+y}) = (x+y)\times log_b(b) = (x+y) \times 1 = x + y[/tex]
Thus,
The simplification of the given expression requires the given below properties of logarithm
- [tex]log_a(b^c) = c \times log_a(b)\\\\[/tex]
- [tex]log_b(b) = 1[/tex]
Learn more about logarithms here:
https://brainly.com/question/20835449
Answer:
logb(b^c)=c
Step-by-step explanation:
If you are doing this on edge it's C