Respuesta :

Answer:

The length of cuboid is [tex]\sf{7\dfrac{1}{5} \: in}[/tex]

Step-by-step explanation:

Here's the required formula to find the length of cuboid :

[tex]\longrightarrow{\pmb{\sf{V = \ell \times w \times h}}}[/tex]

  • [tex]\pink\star[/tex] V = Volume
  • [tex]\pink\star[/tex] l = length
  • [tex]\pink\star[/tex] w = width
  • [tex]\pink\star[/tex] h = height

Substituting all the given values in the formula to find the length of cuboid :

  • [tex]\purple\star[/tex] V = 60
  • [tex]\purple\star[/tex] l = ?
  • [tex]\purple\star[/tex] w = 2½
  • [tex]\purple\star[/tex] h = 3⅓

[tex]\implies{\sf{V = \ell \times w \times h}}[/tex]

[tex]\implies{\sf{60= \ell\times 2\dfrac{1}{2} \times 3\dfrac{1}{3}}}[/tex]

[tex]\implies{\sf{60= \ell\times \dfrac{4 + 1}{2} \times \dfrac{9 + 1}{3}}}[/tex]

[tex]\implies{\sf{60= \ell\times \dfrac{5}{2} \times \dfrac{10}{3}}}[/tex]

[tex]\implies{\sf{60= \ell\times \dfrac{5 \times 10}{2 \times 3}}}[/tex]

[tex]\implies{\sf{60= \ell\times \dfrac{50}{6}}}[/tex]

[tex]\implies{\sf{\ell = 60 \times \dfrac{6}{50}}}[/tex]

[tex]\implies{\sf{\ell = \dfrac{60 \times 6}{50}}}[/tex]

[tex]\implies{\sf{\ell = \dfrac{360}{50}}}[/tex]

[tex]\implies{\sf{\ell = \dfrac{36 \cancel{0}}{5 \cancel{0}}}}[/tex]

[tex]\implies{\sf{\ell = \dfrac{36}{5}}}[/tex]

[tex]\implies{\sf{\ell = 7\dfrac{1}{5}}}[/tex]

[tex]\star{\underline{\boxed{\tt{\red{\ell = 7\dfrac{1}{5} \: in}}}}}[/tex]

Hence, the length of cuboid is 7(1/5) in.

[tex]\rule{300}{2.5}[/tex]