✓ 4x + 36 - 6
Evaluate the limit: lim
20

[tex]\qquad[/tex] ☀️[tex]\pink{\bf{ {Answer = \: \: \dfrac{1}{3} }}} \\\\[/tex]
[tex]\qquad[/tex][tex]\pink{\bf\twoheadrightarrow \bf\displaystyle \lim_{x \to 0} \dfrac{\sqrt{4x +36} -6}{x }}\\\\[/tex]
[tex]\bf\twoheadrightarrow \displaystyle \lim_{x \to 0} \bigg(\dfrac{\sqrt{4x+36} - 6}{x} \bigg) \ \times \bigg( \dfrac{\sqrt{4x+36} +6}{\sqrt{4x+36} +6} \bigg)\\[/tex]
[tex]\bf \twoheadrightarrow \displaystyle \lim_{x \to 0} \bigg(\dfrac{(\sqrt{4x+36} - 6)\times (\sqrt{4x+36}+6)}{x(\sqrt{4x+36}+6)} \bigg)\\[/tex]
[tex]\bf \twoheadrightarrow \displaystyle \lim_{x \to 0} \bigg(\dfrac{(\sqrt{4x+36}) ^{2} - (6)^{2} }{x(\sqrt{4x+36} +6)} \bigg)\\[/tex]
[tex]\bf \twoheadrightarrow \displaystyle \lim_{x \to 0} \bigg(\dfrac{4x+36-36}{x(\sqrt{4x+36} +6)} \bigg)\\[/tex]
[tex]\bf \twoheadrightarrow \displaystyle \lim_{x \to 0} \bigg(\dfrac{4x+\cancel{36}-\cancel{36}}{x(\sqrt{4x+36} +6)} \bigg)\\[/tex]
[tex]\bf \twoheadrightarrow \displaystyle \lim_{x \to 0} \bigg(\dfrac{4\cancel{x}}{\cancel{x}(\sqrt{4x+36} +6)} \bigg)\\[/tex]
[tex]\bf \twoheadrightarrow \displaystyle \lim_{x \to 0} \bigg(\dfrac{4}{(\sqrt{4x+36} +6)} \bigg)\\[/tex]
Now, substitute x = 0
[tex]\qquad[/tex] [tex] \bf \twoheadrightarrow \bigg(\dfrac{4}{(\sqrt{4\times 0+36} +6)} \bigg)[/tex]
[tex]\qquad[/tex] [tex] \sf \twoheadrightarrow \bigg(\dfrac{4}{(\sqrt{36}+6)} \bigg)[/tex]
[tex]\qquad[/tex] [tex] \sf\twoheadrightarrow \bigg(\dfrac{4}{(6+6)} \bigg)[/tex]
[tex]\qquad[/tex] [tex] \sf \twoheadrightarrow \bigg(\dfrac{4}{12} \bigg)[/tex]
[tex]\qquad[/tex] [tex] \pink{\bf \twoheadrightarrow \dfrac{1}{3} }[/tex]
Rationalizing the function, it is found that the limit is [tex]\frac{1}{3}[/tex].
The limit that we want to find is:
[tex]\lim_{x \rightarrow 0} \frac{\sqrt{4x + 36} - 6}{x}[/tex]
Using the standard procedure of replacing x by 0, we end with a division by 0, hence it cannot be used.
When there is a division by 0 and a square root, we can rationalize the function, as follows:
[tex]\frac{\sqrt{4x + 36} - 6}{x} \times \frac{\sqrt{4x + 36} + 6}{\sqrt{4x + 36} + 6} = \frac{4x + 36 - 36}{x(\sqrt{4x + 36} + 6)} = \frac{4}{\sqrt{4x + 36} + 6}[/tex]
Then:
[tex]\lim_{x \rightarrow 0} \frac{\sqrt{4x + 36} - 6}{x} = \lim_{x \rightarrow 0} \frac{4}{\sqrt{4x + 36} + 6}[/tex]
Now the standard procedure of replacing can be applied, hence:
[tex]\lim_{x \rightarrow 0} \frac{4}{\sqrt{4x + 36} + 6} = \frac{4}{12} = \frac{1}{3}[/tex]
The limit is [tex]\frac{1}{3}[/tex].
You can learn more about limits at https://brainly.com/question/26367086