a) Show that the equation 20-x^3-7x^2=0 can be rearranged to give x=20/x^2 - 7
b) using xn+1 = 20/x^2 - 7 with x0 = -9 find the values of x1, x2 and x3
C) explain what the values of x1, x2 and x3 represent

a Show that the equation 20x37x20 can be rearranged to give x20x2 7 b using xn1 20x2 7 with x0 9 find the values of x1 x2 and x3 C explain what the values of x1 class=

Respuesta :

Answer:

Step-by-step explanation:

      [tex]20-x^3-7x^2=0[/tex]

a)

  • Add [tex]x^3[/tex] to both sides of the equation:     [tex]20-7x^2=x^3[/tex]
  • Divide both sides by [tex]x^2[/tex]:    [tex]\frac{20}{x^2} -\frac{7x^2}{x^2} =\frac{x^3}{x^2}[/tex]  ⇒  [tex]\frac{20}{x^2} -7 =x[/tex]

b)

    [tex]x_1=\frac{20}{(x_0)^2} -7[/tex]

⇒ [tex]x_1=\frac{20}{(-9)^2} -7[/tex]

⇒ [tex]x_1=-\frac{547}{81}[/tex]

    [tex]x_2=\frac{20}{(x_1)^2} -7[/tex]

⇒ [tex]x_2=\frac{20}{(-\frac{547}{81})^2} -7[/tex]

⇒ [tex]x_2=-6.561443673...[/tex]

   [tex]x_3=\frac{20}{(x_2)^2} -7[/tex]

⇒ [tex]x_3=\frac{20}{(-6.561443673...)^2} -7[/tex]

⇒ [tex]x_3=-6.535451368...[/tex]

c) approximation to the location of one of the roots of the equation.  Each iteration gives a slightly more accurate value of a root [tex]x[/tex].

RELAXING NOICE
Relax