Respuesta :

a=6, b=2

Step-by-step explanation:

Use simplification into substitution
[tex]\frac{a}{3} =1+\frac{2}{b}[/tex]

[tex]a=3(1+\frac{2}{b})[/tex]

[tex]a=3+\frac{6}{b}[/tex]

We can now plug this value of a into the second equation.

[tex]\frac{3+\frac{6}{b} }{4} +\frac{3}{b} =3[/tex]

Get rid of fractions in the numerators and/or denominators

[tex]\frac{3b+6}{4b} +\frac{3}{b} =3[/tex]

Then we can match the denominators

[tex]\frac{3b+6}{4b} +\frac{12}{4b} =3[/tex]

Combine

[tex]\frac{3b+18}{4b} =3[/tex]

Divide both sides by three

[tex]\frac{b+6}{4b} =1[/tex]

Get rid of fractions

[tex]b+6=4b[/tex]

Single out b

[tex]6=3b[/tex]

[tex]b=2[/tex]

Now we can plug it into the equation

[tex]\frac{a}{3} -\frac{2}{2} =1[/tex]

[tex]\frac{a}{3} =2[/tex]

[tex]a=6[/tex]

Now we can check it;

[tex]\frac{6}{3} -\frac{2}{2} =1[/tex]

↑CORRECT

[tex]\frac{6}{4} +\frac{3}{2} =3[/tex]

↑CORRECT

RELAXING NOICE
Relax