Respuesta :

Answer:

h = 2[tex]\sqrt{3}[/tex]

b = 3[tex]\sqrt{2}[/tex]

Step-by-step explanation:

to find 'h' we can use the ratio of sides in a 30-60-90° triangle which, respectively, is 1 : [tex]\sqrt{3}[/tex] : 2

so we can set up this proportion:

h/2 = 1/[tex]\sqrt{3}[/tex]

cross-multiply:

h = 2[tex]\sqrt{3}[/tex]

to find 'b' we can use the ratio of sides in a 45-45-90° triangle which, respectively, is 1 : 1 : [tex]\sqrt{2}[/tex]

we can set up this proportion:

3/b = 1/[tex]\sqrt{2}[/tex]

cross-multiply:

b = 3[tex]\sqrt{2}[/tex]

sinθ is equal to the division of the opposite side of the reference angle (θ) by the hypotenuse.

the cosine of an angle in a right triangle equals the adjacent side divided by the hypotenuse

tan30 = h/2

[tex]tan30 = \frac{1}{ \sqrt{3} } [/tex]

1/sqrt3 = h/2

[tex]h = \frac{2}{ \sqrt{3} } [/tex]

sin45 = 3/b

[tex]sin45 = \frac{1}{ \sqrt{2} } [/tex]

1/sqrt2 = 3/b

b/sqrt2 =3

[tex]b = 3 \sqrt{2} [/tex]

Ver imagen Eyadaqrabawi
RELAXING NOICE
Relax