Respuesta :

Answer:

a = 3   b = -18   c = 11   d = 0

Step-by-step explanation:

The table tells you what value the function will product (y) if you input the corresponding value of x.

So, for example, if you input the value of x = 1 into the function, you will get y = -4.

If we substitute x = 0 and y = 0 into the function we can find the value of d immediately:

0 = a(0)³ + b(0)² +c(0) + d

0 = 0 + 0 + 0 + d

0 = d

As d = 0, we can now eliminate d and write the function as:

y = ax³ + bx² + cx

Now substitute the remaining pairs of values into y = ax³ + bx² + cx to create 3 equations:

1) When x = 1, y = -4

⇒ a(1)³ + b(1)² + c(1) = -4

⇒ a + b + c = -4

2) When x = 2, y = -26

⇒ a(2)³ + b(2)² + c(2) = -26

⇒  8a + 4b + 2c = -26

⇒  4a + 2b + c = -13

3) When x = 3, y = -48

⇒ a(3)³ + b(3)² + c(3) = -48

⇒ 27a + 9b + 3c = -48

⇒ 9a + 3b + c = -16

Now solve the system of 3 equations simultaneously to find the value of a, b and c.  To do this, reduce this to 2 equations with 2 unknowns by eliminating one of the unknowns from two pairs of equations:

Eliminate c by subtracting equation 1) from equation 2) to create equation 4):

2)  4a + 2b + c = -13

1)   a + b + c = -4

4)  3a + b = -9

Eliminate c by subtracting equation 2) from equation 3) to create equation 5):

3)  9a + 3b + c = -16

2)  4a + 2b + c = -13

5)  5a + b = -3

Now use equations 4) and 5) to find a and b, by subtracting equation 4) from equation 5) to find a:

5)  5a + b = -3

4)  3a + b = -9

6)  2a = 6

  ⇒  a = 6 ÷ 2 = 3

and substituting the found value of a into equation 4) or 5) to find b:

5)  5(3) + b = -3

      15 + b = -3

         ⇒ b = -18

Now substitute the found values for a and b into one of the original 3 equations to find c:

1)   a + b + c = -4

    3 - 18 + c = -4

              ⇒ c = 11

Therefore,  the function is   y = 3x³ - 18x² + 11x

ACCESS MORE
EDU ACCESS
Universidad de Mexico