What is the value of sin∠ACD?

Answer:
4/5
Step-by-step explanation:
Sin is opposite over hypotenuse
24 / 30 = 4/5
Answer:
Answer is 4/5
Step-by-step explanation:
» From trigonometric ratios of sine:
[tex]{ \tt{ \red{ \sin( \theta) = \frac{opposite}{hypotenuse} }}} \\ [/tex]
» But from the triangle given;
• Opposite:
[tex]{ \tt{opposite = (12 + 12) \: ft}} \\ { \underline{ \tt{ \: opposite = 24 \: ft \: }}}[/tex]
• Hypotenuse:
[tex]{ \tt{hypotenuse = (15 + 15) \: ft}} \\ { \underline{ \tt{ \: hypotenuse = 30 \: ft \: }}}[/tex]
» Therefore, let's find the sine of angle ACD;
[tex]{ \tt{ \sin( \angle ACD) = \frac{24}{30} }} \\ \\ { \boxed{ \blue{ \tt{ \: \sin( \angle ACD) = \frac{4}{5} \: }}}}[/tex]