Particle P moves along the y-axis so that its position at time t is given by y(t)=4t−23 for all times t. A second particle, particle Q, moves along the x-axis so that its position at time t is given by x(t)=sin(πt)2−t for all times t≠2.
As time t approaches 2, what is the limit of the position of particle Q ? Show the work that leads to your answer.
Show that the velocity of particle Q is given by vQ(t)=2πcos(πt)−πtcos(πt)+sin(πt)(2−t)2 for all times t≠2.
Find the rate of change of the distance between particle P and particle Q at time t=12. Show the work that leads to your answer.

Respuesta :

a) The limit of the position of particle [tex]Q[/tex] when time approaches 2 is [tex]-\pi[/tex].

b) The velocity of particle [tex]Q[/tex] is [tex]v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}}[/tex] for all [tex]t \ne 2[/tex].

c) The rate of change of the distance between particle [tex]P[/tex] and particle [tex]Q[/tex] at time [tex]t = \frac{1}{2}[/tex] is [tex]\frac{4\sqrt{82}}{9}[/tex].

How to apply limits and derivatives to the study of particle motion

a) To determine the limit for [tex]t = 2[/tex], we need to apply the following two algebraic substitutions:

[tex]u = \pi t[/tex] (1)

[tex]k = 2\pi - u[/tex] (2)

Then, the limit is written as follows:

[tex]x(t) = \lim_{t \to 2} \frac{\sin \pi t}{2-t}[/tex]

[tex]x(t) = \lim_{t \to 2} \frac{\pi\cdot \sin \pi t}{2\pi - \pi t}[/tex]

[tex]x(u) = \lim_{u \to 2\pi} \frac{\pi\cdot \sin u}{2\pi - u}[/tex]

[tex]x(k) = \lim_{k \to 0} \frac{\pi\cdot \sin (2\pi-k)}{k}[/tex]

[tex]x(k) = -\pi\cdot \lim_{k \to 0} \frac{\sin k}{k}[/tex]

[tex]x(k) = -\pi[/tex]

The limit of the position of particle [tex]Q[/tex] when time approaches 2 is [tex]-\pi[/tex]. [tex]\blacksquare[/tex]

b) The function velocity of particle [tex]Q[/tex] is determined by the derivative formula for the division between two functions, that is:

[tex]v_{Q}(t) = \frac{f'(t)\cdot g(t)-f(t)\cdot g'(t)}{g(t)^{2}}[/tex] (3)

Where:

  • [tex]f(t)[/tex] - Function numerator.
  • [tex]g(t)[/tex] - Function denominator.
  • [tex]f'(t)[/tex] - First derivative of the function numerator.
  • [tex]g'(x)[/tex] - First derivative of the function denominator.

If we know that [tex]f(t) = \sin \pi t[/tex], [tex]g(t) = 2 - t[/tex], [tex]f'(t) = \pi \cdot \cos \pi t[/tex] and [tex]g'(x) = -1[/tex], then the function velocity of the particle is:

[tex]v_{Q}(t) = \frac{\pi \cdot \cos \pi t \cdot (2-t)-\sin \pi t}{(2-t)^{2}}[/tex]

[tex]v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}}[/tex]

The velocity of particle [tex]Q[/tex] is [tex]v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}}[/tex] for all [tex]t \ne 2[/tex]. [tex]\blacksquare[/tex]

c) The vector rate of change of the distance between particle P and particle Q ([tex]\dot r_{Q/P} (t)[/tex]) is equal to the vectorial difference between respective vectors velocity:

[tex]\dot r_{Q/P}(t) = \vec v_{Q}(t) - \vec v_{P}(t)[/tex] (4)

Where [tex]\vec v_{P}(t)[/tex] is the vector velocity of particle P.

If we know that [tex]\vec v_{P}(t) = (0, 4)[/tex], [tex]\vec v_{Q}(t) = \left(\frac{2\pi\cdot \cos \pi t - \pi\cdot t \cdot \cos \pi t + \sin \pi t}{(2-t)^{2}}, 0 \right)[/tex] and [tex]t = \frac{1}{2}[/tex], then the vector rate of change of the distance between the two particles:

[tex]\dot r_{P/Q}(t) = \left(\frac{2\pi \cdot \cos \pi t - \pi\cdot t \cdot \cos \pi t + \sin \pi t}{(2-t)^{2}}, -4 \right)[/tex]

[tex]\dot r_{Q/P}\left(\frac{1}{2} \right) = \left(\frac{2\pi\cdot \cos \frac{\pi}{2}-\frac{\pi}{2}\cdot \cos \frac{\pi}{2} +\sin \frac{\pi}{2}}{\frac{3}{2} ^{2}}, -4 \right)[/tex]

[tex]\dot r_{Q/P} \left(\frac{1}{2} \right) = \left(\frac{4}{9}, -4 \right)[/tex]

The magnitude of the vector rate of change is determined by Pythagorean theorem:

[tex]|\dot r_{Q/P}| = \sqrt{\left(\frac{4}{9} \right)^{2}+(-4)^{2}}[/tex]

[tex]|\dot r_{Q/P}| = \frac{4\sqrt{82}}{9}[/tex]

The rate of change of the distance between particle [tex]P[/tex] and particle [tex]Q[/tex] at time [tex]t = \frac{1}{2}[/tex] is [tex]\frac{4\sqrt{82}}{9}[/tex]. [tex]\blacksquare[/tex]

Remark

The statement is incomplete and poorly formatted. Correct form is shown below:

Particle [tex]P[/tex] moves along the y-axis so that its position at time [tex]t[/tex] is given by [tex]y(t) = 4\cdot t - 23[/tex] for all times [tex]t[/tex]. A second particle, [tex]Q[/tex], moves along the x-axis so that its position at time [tex]t[/tex] is given by [tex]x(t) = \frac{\sin \pi t}{2-t}[/tex] for all times [tex]t \ne 2[/tex].

a) As times approaches 2, what is the limit of the position of particle [tex]Q?[/tex] Show the work that leads to your answer.

b) Show that the velocity of particle [tex]Q[/tex] is given by [tex]v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t +\sin \pi t}{(2-t)^{2}}[/tex].

c) Find the rate of change of the distance between particle [tex]P[/tex] and particle [tex]Q[/tex] at time [tex]t = \frac{1}{2}[/tex]. Show the work that leads to your answer.

To learn more on derivatives, we kindly invite to check this verified question: https://brainly.com/question/2788760

ACCESS MORE
EDU ACCESS