The revenue function is the sum of the profit and cost functions
The average rate of the revenue is 55.67
The revenue function is given as:
[tex]R(x) = 56x - 0.01x^2[/tex]
The interval is given as:
(a,b) =(11,22)
The average rate of change over the interval (a,b) is calculated as:
[tex]R'(x) =\frac{R(b) - R(a)}{b -a}[/tex]
This gives
[tex]R'(x) =\frac{R(22) - R(11)}{22 -11}[/tex]
[tex]R'(x) =\frac{R(22) - R(11)}{11}[/tex]
Calculate R(22) and R(11)
[tex]R(22) = 56*22 - 0.01*22^2[/tex]
[tex]R(22) = 1227.16[/tex]
[tex]R(11) = 56*11 - 0.01*11^2[/tex]
[tex]R(11) = 614.79[/tex]
So, we have:
[tex]R'(x) =\frac{R(22) - R(11)}{11}[/tex]
[tex]R'(x) =\frac{1227.16 - 614.79}{11}[/tex]
[tex]R'(x) =\frac{612.37}{11}[/tex]
Evaluate the quotient
[tex]R'(x) =55.67[/tex]
Hence, the average rate of the revenue is 55.67
Read more about average rate of change at:
https://brainly.com/question/8728504