Answer:
[tex]b=\sqrt[3]{16}[/tex]
Step-by-step explanation:
Determine interception point of curves
[tex]36x^2=4[/tex]
[tex]x^2=\frac{4}{36}[/tex]
[tex]x^2=\frac{1}{9}[/tex]
[tex]x=\pm\frac{1}{3}[/tex]
Find the area of the bounded region
[tex]\int\limits^\frac{1}{3} _{-\frac{1}{3}} {4-36x^2} \, dx\\ \\=4x-12x^3\Bigr|_{-\frac{1}{3} }^{\frac{1}{3} }\\\\=[4(\frac{1}{3})-12(\frac{1}{3})^3]-[4(-\frac{1}{3})-12(-\frac{1}{3})^3]\\\\=\frac{8}{9}-(-\frac{8}{9})\\\\= \frac{8}{9}+\frac{8}{9} \\\\=\frac{16}{9}[/tex]
Therefore, since half of the area is [tex]\frac{8}{9}[/tex], we can set one-half of the region between 0 and x where [tex]x=\frac{\sqrt{b}}{6}[/tex] and determine b:
[tex]\frac{8}{9}=\int\limits^\frac{\sqrt{b}}{6} _0 {b-36x^2} \, dx\\\\\frac{8}{9} =bx-12x^3\Bigr|_{0}^{\frac{\sqrt{b}}{6} }\\\\\frac{8}{9}=b(\frac{\sqrt{b}}{6})-12(\frac{\sqrt{b}}{6})^3\\\\\frac{8}{9}=\frac{b\sqrt{b}}{6}-12(\frac{b^{\frac{3}{2}}}{216})\\\\\frac{8}{9}=\frac{b\sqrt{b}}{6}-(\frac{b^{\frac{3}{2}}}{18})\\\\\frac{16}{18}=\frac{3b\sqrt{b}}{18}-\frac{b^{\frac{3}{2}}}{18}\\\\16=3b\sqrt{b}-b^{\frac{3}{2}}\\\\16=3b^{\frac{3}{2}}-b^{\frac{3}{2}}\\\\16=2b^{\frac{3}{2}}[/tex]
To account for both halves of the region:
[tex]16=2(2b^{\frac{3}{2}})\\16=4b^{\frac{3}{2}}\\4=b^{\frac{3}{2}}\\b=\sqrt[3]{16}[/tex]
Therefore, the line [tex]b=\sqrt[3]{16}[/tex] will divide the area between the curves into two regions with equal area