please answer!
What is the product of -2x^3+x-5 and x^3-3x-4?

(A) Show your work.

(B) Is the product of -2x^3+x-5 and x^3-3x-4 equal to the product of x^3-3x-4 and -2x^3+x-5? Explain your answer.

Respuesta :

Answer:

[tex]\textsf{A)}\quad -2x^6+7x^4+3x^3-3x^2+11x+20[/tex]

B)    Yes → Commutative Law

Step-by-step explanation:

Part (A)

To find the product of the given quadratic expressions, place each expression in brackets then multiply them:

[tex]\implies (-2x^3+x-5)(x^3-3x-4)[/tex]

Distribute the parentheses:

[tex]\implies -2x^3(x^3)-2x^3(-3x)-2x^3(-4)+x(x^3)+x(-3x)+x(-4)-5(x^3)-5(-3x)-5(-4)[/tex]

Simplify:

[tex]\implies -2x^6+6x^4+8x^3+x^4-3x^2-4x-5x^3+15x+20[/tex]

Group like terms:

[tex]\implies -2x^6+6x^4+x^4+8x^3-5x^3-3x^2-4x+15x+20[/tex]

Combine like terms:

[tex]\implies -2x^6+7x^4+3x^3-3x^2+11x+20[/tex]

Part (B)

According the to Commutative Law (for multiplication) changing the order or position of two numbers does not change the end result.

[tex]\textsf{Commutative Law}: \quad a \cdot b = b \cdot a[/tex]

Therefore:

[tex](-2x^3+x-5)(x^3-3x-4)=(x^3-3x-4)(-2x^3+x-5)[/tex]

ACCESS MORE