Respuesta :
Answer:
5/2-7/2 i or 2.5-3.5i
Step-by-step explanation:
expand the fraction remove the parenthesis and then calculate
Answer:
[tex]\large\boxed{\boxed{\underline{\underline{\maltese{\pink{\pmb{\sf{\: Solution \dashrightarrow \frac{5}{2}-\frac{7}{2}i }}}}}}}}[/tex]
Step-by-step explanation:
[tex]\frac { 6 - i } { 1 + i }\\[/tex]
Multiply the numerator & denominstor by the conjugate of 1 - i.
[tex]\frac{\left(6-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)} \\[/tex]
We can solve the denominator by using the identity: a² - b² = (a + b) (a - b). So,
[tex]\frac{\left(6-i\right)\left(1-i\right)}{1^{2}-i^{2}}[/tex]
We know that, i² = - 1. Then, on solving..
[tex]\frac{\left(6-i\right)\left(1-i\right)}{2}[/tex]
Now, simplify this expression,
[tex]\frac{6\times 1+6\left(-i\right)-i-\left(-i^{2}\right)}{2} \\= \frac{6\times 1+6\left(-i\right)-i-\left(-\left(-1\right)\right)}{2} \\= \frac{6-6i-i-1}{2}[/tex]
Combine the real & imaginary parts in 6 - 6i - i - 1.
[tex]\frac{6-1+\left(-6-1\right)i}{2}[/tex]
Simplify it again by adding.
[tex]\frac{5-7i}{2} \\[/tex]
Now seperate the fraction by dividing 5 & -7i by 2.
[tex]\large{\boxed{\sf\frac{5}{2}-\frac{7}{2}i }}[/tex]
__________
[tex]\sf{Hope \: it \: helps}\\\mathfrak{Lucazz}[/tex]