Respuesta :

The measure of angle ANC is 60 degrees

From the diagram, we have the following parameters

[tex]\angle ABC = 20[/tex]

[tex]\angle CAB = 80[/tex]

How to calculate angle ANC

Given that triangle ABC is an isosceles triangle, where lengths AB and BC are congruent, then

[tex]\angle BCA = 80[/tex] ---- the base angles of an isosceles triangle

Line C N divides angle B CA into equal halves.

So, we have:

[tex]\angle Z C N = \frac 12 \times \angle B C A[/tex]

[tex]\angle Z C N = \frac 12 \times 80[/tex]

[tex]\angle Z C N = 40[/tex]

Considering triangle ANC, we have:

[tex]\angle Z C N + \angle CAN + \angle ANC = 180[/tex] --- the sum of angles in a triangle

So, we have:

[tex]40 + 80 + \angle ANC = 180[/tex]

[tex]120 + \angle ANC = 180[/tex]

Subtract 120 from both sides

[tex]\angle ANC = 60[/tex]

Hence, the measure of angle ANC is 60 degrees

Read more about isosceles triangles at:

https://brainly.com/question/1475130

ACCESS MORE