find the dy/dx
y= 3x²+5x-6

This process is called differentiation. To solve for the [tex]\frac{dy}{dx}[/tex] of an equation, the general formula is [tex]ax^{a-1}[/tex]. The notation could also be written as [tex]y'[/tex] or [tex]f'(x)[/tex]. Let's solve the equation here.
[tex]y = 3x^{2} + 5x - 6\\y' = (2 \times 3x^{2-1}) + (1 \times 5x^{1-1}) - 0\\y' = 6x^{1} + 5x^{0} - 0\\y' = 6x + 5[/tex]
Note that the derivate [tex]y'[/tex] of a constant (e.g., [tex]5, 8, -1, 4, 0.33[/tex]) is [tex]0[/tex]