For j(x) = 5x^ − 3, find j(x+h)-j(x) / h
See image below

Answer:
4th option
Step-by-step explanation:
Given
j(x) = [tex]5^{x-3}[/tex] , then
j(x + h) = [tex]5^{x+h-3}[/tex]
[tex]\frac{j(x+2)-j(x)}{h}[/tex]
= [tex]\frac{5^{x+h-3}-5^{x-3} }{h}[/tex] ← factor out [tex]5^{x-3}[/tex] from each term on the numerator
= [tex]\frac{5^{x-3}(5^{h}-1) }{h}[/tex]
The value of j(x+h)-j(x) / h is 5^{x-3}(5^h-1)/h if j(x) = 5^{x − 3} option fourth is correct.
It is defined as a special type of relationship and they have a predefined domain and range according to the function every value in the domain is related to exactly one value in the range.
We have:
[tex]\rm j(x) = 5^{x-3}[/tex]
First fine the value of j(x+h) for this simply plug x+h in the j(x), we get:
[tex]\rm j(x+h) = 5^{x+h-3}[/tex]
Put the values of j(x) and j(x+h) in the below expression, we get;
[tex]=\rm \frac{j(x+h)-j(x)}{h}[/tex]
[tex]=\rm \frac{5^{x+h-3}-5^{x-3}}{h}[/tex]
[tex]=\rm 5^{x-3}\frac{5^{h}-1}{h}[/tex] or
[tex]=\rm \frac{5^{x-3}(5^{h}-1)}{h}[/tex]
Thus, the value of j(x+h)-j(x) / h is 5^{x-3}(5^h-1)/h if j(x) = 5^{x − 3} option fourth is correct.
Learn more about the function here:
brainly.com/question/5245372