Respuesta :
Answer:
[tex]\displaystyle \int_1^6\left|\frac{1}{x}-\frac{1}{x^2}\right|dx=\ln|6|-\frac{5}{6}[/tex]
Step-by-step explanation:
We'll integrate with respect to x.
Recall that the area between some [tex]f(x)[/tex] and some [tex]g(x)[/tex] on the interval [tex][a, b][/tex] is given by:
[tex]\displaystyle \int_a^b|f(x)-g(x)|dx[/tex]
The function [tex]x=6[/tex] will be the upper bounds of our definite integral. The lower bounds will be the intersection of [tex]\displaystyle y=\frac{1}{x}[/tex] and [tex]\displaystyle y=\frac{1}{x^2}[/tex]. Set the functions equal to each other and solve for x:
[tex]\displaystyle \frac{1}{x}=\frac{1}{x^2},\\\\x^2=x,\\x=1[/tex]
Therefore, we'll be integrating the area between [tex]\displaystyle \frac{1}{x}[/tex] and [tex]\displaystyle \frac{1}{x^2}[/tex] on the interval [tex][1, 6][/tex]. In integral notation, this is:
[tex]\displaystyle \int_1^6\left|\frac{1}{x}-\frac{1}{x^2}\right|dx[/tex]
To evaluate this integral, recall that [tex]\displaystyle \int \frac{1}{x}dx=\ln|x|+C[/tex] and [tex]\displaystyle \int \frac{1}{x^2}dx=\int x^{-2}dx=-x^{-1}+C=-\frac{1}{x}+C[/tex].
Therefore,
[tex]\displaystyle \int_1^6\left|\frac{1}{x}-\frac{1}{x^2}\right|dx=\int_1^6\ln|x|-\left(-\frac{1}{x}\right)dx=\int_1^6\ln|x|+\frac{1}{x}dx[/tex]
Solving yields:
[tex]\displaystyle\left \left(\ln|x|+\frac{1}{x}\right) \right \vert_1^6=\ln|6|+\frac{1}{6}-\left(\ln|1|+\frac{1}{1}\right)=\ln|6|+\frac{1}{6}-0-1=\boxed{\ln|6|-\frac{5}{6}}[/tex]
Answer:
[tex]\ln 6 - \dfrac{5}{6}[/tex]
Step-by-step explanation:
To find the area enclosed by curves and lines, use definite integration:
[tex]\displaystyle \int^b_a \text{f}(x)\:\:\text{d}x \quad \textsf{(where a is the lower limit and b is the upper limit)}[/tex]
Definite integrals have limits. The limits tell you the range of x-values to integrate the function between.
Given functions:
[tex]\begin{cases}y=\dfrac{1}{x}\\\\y=\dfrac{1}{x^2}\end{cases}[/tex]
The upper limit has been given as x = 6.
The lower limit is the point of intersection of the two curves.
To find the lower limit, equate the functions and solve for x:
[tex]\implies \dfrac{1}{x}=\dfrac{1}{x^2}[/tex]
[tex]\implies x=1[/tex]
Therefore, the limits for this integration are x = 1 and x = 6.
To find the area enclosed by the two curves, the point of intersection and the line x=3, integrate the areas under both curves using definite integration and subtract the area under the lower curve from the area under the upper curve.
[tex]\begin{aligned}\displaystyle \int^6_1 \dfrac{1}{x}\:\:dx-\int^6_1 \dfrac{1}{x^2}\:\:dx & = \int^6_1\left(\dfrac{1}{x}-\dfrac{1}{x^2}\right)\:\:dx \\\\& = \int^6_1\left(\dfrac{1}{x}-x^{-2}\right)\:\:dx\\\\& = \left[\ln |x| + \dfrac{1}{x} \right]^6_1\\\\& = \left(\ln 6 + \dfrac{1}{6} \right) - \left(\ln 1 + \dfrac{1}{1} \right)\\\\& = \left(\ln 6 + \dfrac{1}{6} \right) - \left(0 +1\right)\\\\& = \ln 6 -\dfrac{5}{6}\end{aligned}[/tex]
Integration Rules
[tex]\boxed{\begin{minipage}{4 cm}\underline{Integrating $x^n$}\\\\$\displaystyle \int x^n\:\text{d}x=\dfrac{x^{n+1}}{n+1}+\text{C}$\end{minipage}}[/tex]
Increase the power by 1, then divide by the new power.
[tex]\boxed{\begin{minipage}{3.5 cm}\underline{Integrating $\frac{1}{x}$}\\\\$\displaystyle \int \dfrac{1}{x}\:\text{d}x=\ln |x|+\text{C}$\end{minipage}}[/tex]
Learn more about integration here:
https://brainly.com/question/27805589
https://brainly.com/question/27954290
