Answer:
The volume of sphere is 2143.57.
Step-by-step explanation:
Here's the required formula to find the volume of sphere :
[tex]{\star{\small{\underline{\boxed{\sf{\purple{Volume_{(Sphere)} = \dfrac{4}{3}\pi {r}^{3}}}}}}}}[/tex]
- »» π = 3.14
- »» r = radius
[tex]{\dashrightarrow{\sf{Volume_{(Sphere)} = \dfrac{4}{3}\pi {r}^{3}}}}[/tex]
[tex]{\dashrightarrow{\sf{Volume_{(Sphere)} = \dfrac{4}{3} \times 3.14 {(8)}^{3}}}}[/tex]
[tex]{\dashrightarrow{\sf{Volume_{(Sphere)} = \dfrac{4}{3} \times 3.14 {(8 \times 8 \times 8)}}}}[/tex]
[tex]{\dashrightarrow{\sf{Volume_{(Sphere)} = \dfrac{4}{3} \times 3.14 {(64 \times 8)}}}}[/tex]
[tex]{\dashrightarrow{\sf{Volume_{(Sphere)} = \dfrac{4}{3} \times 3.14 {(512)}}}}[/tex]
[tex]{\dashrightarrow{\sf{Volume_{(Sphere)} = \dfrac{4}{3} \times 3.14 \times 512}}}[/tex]
[tex]{\dashrightarrow{\sf{Volume_{(Sphere)} = \dfrac{4 \times 3.14 \times 512}{3}}}}[/tex]
[tex]{\dashrightarrow{\sf{Volume_{(Sphere)} = \dfrac{12.56\times 512}{3}}}}[/tex]
[tex]{\dashrightarrow{\sf{Volume_{(Sphere)} = \dfrac{6430.72}{3}}}}[/tex]
[tex]{\dashrightarrow{\sf{Volume_{(Sphere)} \approx 2143.57}}}[/tex]
[tex]\star{\underline{\boxed{\sf{\red{Volume_{(Sphere)} \approx 2143.57}}}}}[/tex]
Hence, the volume of sphere is 2143.57.
[tex]\rule{300}{2.5}[/tex]