Find the volume of the sphere.
Either enter an exact answer in terms of π or use 3.14, point, 14 for π and round your final answer to the nearest hundredth

Find the volume of the sphere Either enter an exact answer in terms of π or use 314 point 14 for π and round your final answer to the nearest hundredth class=

Respuesta :

[tex]\textit{volume of a sphere}\\\\ V=\cfrac{4\pi r^3}{3}~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=8 \end{cases}\implies \begin{array}{llll} V=\cfrac{4\pi (8)^3}{3}\implies V=\cfrac{2048\pi }{3}\\\\ V\approx 2144.66 \end{array}[/tex]

Answer:

The volume of sphere is 2143.57.

Step-by-step explanation:

Here's the required formula to find the volume of sphere :

[tex]{\star{\small{\underline{\boxed{\sf{\purple{Volume_{(Sphere)} = \dfrac{4}{3}\pi {r}^{3}}}}}}}}[/tex]

  • »» π = 3.14
  • »» r = radius

[tex]{\dashrightarrow{\sf{Volume_{(Sphere)} = \dfrac{4}{3}\pi {r}^{3}}}}[/tex]

[tex]{\dashrightarrow{\sf{Volume_{(Sphere)} = \dfrac{4}{3} \times 3.14 {(8)}^{3}}}}[/tex]

[tex]{\dashrightarrow{\sf{Volume_{(Sphere)} = \dfrac{4}{3} \times 3.14 {(8 \times 8 \times 8)}}}}[/tex]

[tex]{\dashrightarrow{\sf{Volume_{(Sphere)} = \dfrac{4}{3} \times 3.14 {(64 \times 8)}}}}[/tex]

[tex]{\dashrightarrow{\sf{Volume_{(Sphere)} = \dfrac{4}{3} \times 3.14 {(512)}}}}[/tex]

[tex]{\dashrightarrow{\sf{Volume_{(Sphere)} = \dfrac{4}{3} \times 3.14 \times 512}}}[/tex]

[tex]{\dashrightarrow{\sf{Volume_{(Sphere)} = \dfrac{4 \times 3.14 \times 512}{3}}}}[/tex]

[tex]{\dashrightarrow{\sf{Volume_{(Sphere)} = \dfrac{12.56\times 512}{3}}}}[/tex]

[tex]{\dashrightarrow{\sf{Volume_{(Sphere)} = \dfrac{6430.72}{3}}}}[/tex]

[tex]{\dashrightarrow{\sf{Volume_{(Sphere)} \approx 2143.57}}}[/tex]

[tex]\star{\underline{\boxed{\sf{\red{Volume_{(Sphere)} \approx 2143.57}}}}}[/tex]

Hence, the volume of sphere is 2143.57.

[tex]\rule{300}{2.5}[/tex]

ACCESS MORE