What is the simplified form of the following expression? 7 (RootIndex 3 StartRoot 2 x EndRoot) minus 3 (RootIndex 3 StartRoot 16 x EndRoot) minus 3 (RootIndex 3 StartRoot 8 x EndRoot).

Respuesta :

aksnkj

The simplified form of the given expression [tex]7\sqrt[3]{2x}-3\sqrt[3]{16x} -3\sqrt[3]{8x}[/tex] is [tex]\sqrt[3]{2x} -6\sqrt[3]{x}[/tex].

The given expression is,

[tex]7\sqrt[3]{2x}-3\sqrt[3]{16x} -3\sqrt[3]{8x}[/tex]

It is required to solve the given expression.

How to simplify the given expression?

Write all the terms in the form of power of primes and then take the cube root of that term.

Simplify the given expression as,

[tex]7\sqrt[3]{2x}-3\sqrt[3]{16x} -3\sqrt[3]{8x}=7\sqrt[3]{2x}-3\sqrt[3]{2^4x} -3\sqrt[3]{2^3x}\\ =7\sqrt[3]{2x}-6\sqrt[3]{2x} -6\sqrt[3]{x}\\ =\sqrt[3]{2x} -6\sqrt[3]{x}[/tex]

Therefore, the simplified form of the given expression [tex]7\sqrt[3]{2x}-3\sqrt[3]{16x} -3\sqrt[3]{8x}[/tex] is [tex]\sqrt[3]{2x} -6\sqrt[3]{x}[/tex].

For more details about expression, refer to the link:

https://brainly.com/question/13947055

RELAXING NOICE
Relax