You can take x = a, 2y = b and then can apply the binomial theorem.
The expansion of given expression is given by:
Option D: [tex]x^7 + 14x^6y + 84x^5y^2 + 280x^4y^3 + 560x^3y^4 + 672x^2y^5 + 448xy^6 + 128y^7[/tex] is
It provides algebraic expansion of exponentiated(integer) binomial.
According to binomial theorem,
[tex](a+b)^n = \sum_{i=0}^n ^nC_i a^ib^{n-i}[/tex]
Taking a = x, and b =2y, we have n = 7, thus:
[tex](x+2y)^7 = \: ^7C_0x^0(2y)^7 + \: ^7C_1x^1(2y)^6 + \: ^7C_2x^2(2y)^5 + \: ^7C_3x^3(2y)^4 + \:^7C_4x^4(2y)^3 + \:^7C_5x^5(2y)^2 + \:^7C_6x^6y^1 + \: ^7C_0x^7y^0\\\\ (x+2y)^7 = 128y^7 + 448xy^6 + 672x^2y^5 + 560x^3y^4 + 280x^4y^3 + 84x^5y^2 + 14x^6y + x^7\\\\ (x+2y)^7 = x^7 + 14x^6y + 84x^5y^2 + 280x^4y^3 + 560x^3y^4 + 672x^2y^5 + 448xy^6 + 128y^7[/tex]
Thus, Option D: [tex]x^7 + 14x^6y + 84x^5y^2 + 280x^4y^3 + 560x^3y^4 + 672x^2y^5 + 448xy^6 + 128y^7[/tex] is correct.
Learn more about binomial theorem here:
https://brainly.com/question/86555