Find x and y please

Answer:
Answer:
Step-by-step explanation:
» x and y can only be got through using trigonometric ratios:
✍ For x :
[tex]{ \tt{ \sin( \theta) = \frac{opposite}{hypotenuse} }} \\ \\ { \tt{ \sin(45 \degree) = \frac{x}{6} }} \\ \\ { \tt{x = 6 \times \sin(45 \degree) }} \\ { \tt{x = 4.24}}[/tex]
✍ For y :
[tex]{ \tt{ \cos( \theta) = \frac{adjacent}{hypotenuse} }} \\ \\ { \tt{ \cos( 45 \degree) = \frac{y}{6} }} \\ \\ { \tt{y = 6 \times \cos(45 \degree) }} \\ { \tt{y = 4.24}}[/tex]
Answer:
see below
Step-by-step explanation:
this is a 45 90 45-45-90 right triangle. the side is x and the hypotenuse is x*(sqrt(2)). the hypotenuse is 6, so the side is 3(sqrt(2)).