contestada

Let a = (3,1,2) b = (- 1,2,1) and c = (2,1, a) Set the parameter so that the volume of the parallelepiped is 24​

Respuesta :

Answer:

Either [tex]c = (2,\, 1,\, (-13) / 7)[/tex] or [tex]c = (2,\, 1,\, 5)[/tex].

Step-by-step explanation:

The volume of a parallelepiped with sides [tex]\vec{a}[/tex], [tex]\vec{b}[/tex], and [tex]\vec{c}[/tex] is the absolute value of [tex]\left(\vec{a} \times \vec{b}\right)\, \vec{c}[/tex] (a cross product between the first two sides followed by a dot product with the third side.)

In this example:

[tex]\begin{aligned} &\vec{a} \times \vec{b} \\ =\; & \begin{bmatrix}3 \\ 1 \\ 2\end{bmatrix} \times \begin{bmatrix}-1 \\ 2 \\ 1\end{bmatrix} \\ =\; & \begin{bmatrix}1 \times 1 - 2 \times 2 \\ 2 \times (-1) - 3 \times 1 \\ 3 \times2 - 1 \times (-1) \end{bmatrix} \\ =\; & \begin{bmatrix} -3 \\ -5 \\ 7 \end{bmatrix}\end{aligned}[/tex].

Given that [tex]\vec{c} = (2,\, 1,\, m)[/tex] for some unknown parameter [tex]m[/tex]:

[tex]\begin{aligned}& \left(\vec{a} \times \vec{b}\right)\, \vec{c} \\ =\; & \begin{bmatrix}-3 \\ -5 \\ 7\end{bmatrix}\, \begin{bmatrix}2 \\ 1 \\ m\end{bmatrix} \\ =\; & (-3) \times 2 + (-5) \times 1 + 7 \, m \\ =\; & -11 + 7\, m\end{aligned}[/tex].

The volume of this parallelepiped would be the absolute value [tex]|-11 + 7\, m|[/tex]. For this volume to be equal to [tex]24[/tex], either [tex](-11 + 7\, m) = (-24)[/tex], such that [tex]m = (-13) / 7[/tex], or [tex](-11 + 7\, m) = 24[/tex], such that [tex]m = 5[/tex].

ACCESS MORE