Respuesta :
[tex]\textit{area of a circle}\\\\A=\pi r^2~~\begin{cases}r=radius\\[-0.5em]\hrulefill\\r=4\end{cases}\implies A=\pi (4)^2\implies \stackrel{using~\pi =3.14}{A=50.24}[/tex]
Answer:
The area of circle is 50.24 cm².
Step-by-step explanation:
Here's the required formula to find the area of circle :
[tex]\longrightarrow{\sf{\pmb{Area_{(Circle)} = \pi{r}^{2}}}}[/tex]
- π = 3.14
- r = radius
Substituting all the given values in the formula to find the area of circle :
[tex]\longrightarrow{\sf{Area_{(Circle)} = \pi{r}^{2}}}[/tex]
[tex]\longrightarrow{\sf{Area_{(Circle)} = 3.14{(4)}^{2}}}[/tex]
[tex]\longrightarrow{\sf{Area_{(Circle)} = \dfrac{314}{100}{(4 \times 4)}}}[/tex]
[tex]\longrightarrow{\sf{Area_{(Circle)} = \dfrac{314}{100}{(16)}}}[/tex]
[tex]\longrightarrow{\sf{Area_{(Circle)} = \dfrac{314}{100} \times 16}}[/tex]
[tex]\longrightarrow{\sf{Area_{(Circle)} = \dfrac{5024}{100}}}[/tex]
[tex]\longrightarrow{\sf{\underline{\underline{\red{Area_{(Circle)} = 50.24 \: {cm}^{2}}}}}}[/tex]
Hence, the area of circle is 50.24 cm².
[tex]\rule{300}{2.5}[/tex]