What is the area of a circle with a radius of 4 cm? Use 3.14 for pi and round to the nearest hundredth. Answer value

Respuesta :

[tex]\textit{area of a circle}\\\\A=\pi r^2~~\begin{cases}r=radius\\[-0.5em]\hrulefill\\r=4\end{cases}\implies A=\pi (4)^2\implies \stackrel{using~\pi =3.14}{A=50.24}[/tex]

Answer:

The area of circle is 50.24 cm².

Step-by-step explanation:

Here's the required formula to find the area of circle :

[tex]\longrightarrow{\sf{\pmb{Area_{(Circle)} = \pi{r}^{2}}}}[/tex]

  • π = 3.14
  • r = radius

Substituting all the given values in the formula to find the area of circle :

[tex]\longrightarrow{\sf{Area_{(Circle)} = \pi{r}^{2}}}[/tex]

[tex]\longrightarrow{\sf{Area_{(Circle)} = 3.14{(4)}^{2}}}[/tex]

[tex]\longrightarrow{\sf{Area_{(Circle)} = \dfrac{314}{100}{(4 \times 4)}}}[/tex]

[tex]\longrightarrow{\sf{Area_{(Circle)} = \dfrac{314}{100}{(16)}}}[/tex]

[tex]\longrightarrow{\sf{Area_{(Circle)} = \dfrac{314}{100} \times 16}}[/tex]

[tex]\longrightarrow{\sf{Area_{(Circle)} = \dfrac{5024}{100}}}[/tex]

[tex]\longrightarrow{\sf{\underline{\underline{\red{Area_{(Circle)} = 50.24 \: {cm}^{2}}}}}}[/tex]

Hence, the area of circle is 50.24 cm².

[tex]\rule{300}{2.5}[/tex]

ACCESS MORE