What is the simplified form of the following expression? Assume x greater-than-or-equal-to 0 and y greater-than-or-equal-to 0 2 (RootIndex 4 StartRoot 16 x EndRoot) minus 2 (RootIndex 4 StartRoot 2 y EndRoot) 3 (RootIndex 4 StartRoot 81 x EndRoot) minus 4 (RootIndex 4 StartRoot 32 y EndRoot) 5 (RootIndex 4 StartRoot x EndRoot) minus 4 (RootIndex 4 StartRoot 32 y EndRoot) 5 (RootIndex 4 StartRoot x EndRoot) minus 6 (RootIndex 4 StartRoot 2 y EndRoot) 13 (RootIndex 4 StartRoot x EndRoot) minus 10 (RootIndex 4 StartRoot 2 y EndRoot) 35 (RootIndex 4 StartRoot x EndRoot) minus 18 (RootIndex 4 StartRoot 2 y EndRoot).

Respuesta :

To solve such questions we need to know more about expression.

Expression

In mathematics, an expression is defined as a set of numbers, variables, and mathematical operations that are formed according to rules which are dependent on the context.  

Given to us,

[tex]2\sqrt[4]{16x}-2\sqrt[4]{2y}+3\sqrt[4]{81x}-4\sqrt[4]{32y}+5\sqrt[4]{x}-4\sqrt[4]{32y}+5\sqrt[4]{x}-16\sqrt[4]{2y}+13\sqrt[4]{4}-10\sqrt[4]{2y}+35\sqrt[4]{x}-18\sqrt[4]{2y}[/tex]

rearranging we get,

[tex]=2\sqrt[4]{16x}+3\sqrt[4]{81x}+5\sqrt[4]{x}+5\sqrt[4]{x}+13\sqrt[4]{4}+35\sqrt[4]{x}-2\sqrt[4]{2y}-4\sqrt[4]{32y}-4\sqrt[4]{32y}-16\sqrt[4]{2y}-10\sqrt[4]{2y}-18\sqrt[4]{2y}[/tex]

we know that,

[tex]\sqrt[4]{81}=3\\\sqrt[4]{16}=2\\\sqrt[4]{32}=2\sqrt[4]{2}\\[/tex]

therefore,

[tex]=4\sqrt[4]{x}+9\sqrt[4]{x}+5\sqrt[4]{x}+5\sqrt[4]{x}+13\sqrt[4]{x}+35\sqrt[4]{x}-2\sqrt[4]{2y}-8\sqrt[4]{2y}-8\sqrt[4]{2y}-16\sqrt[4]{2y}-10\sqrt[4]{2y}-18\sqrt[4]{2y}[/tex]

taking [tex]\sqrt[4]{x}[/tex] and [tex]\sqrt[4]{2y}[/tex] as common

=[tex][(\sqrt[4]{x})(4+9+5+5+13+35)]-[(2+8+8+16+10+18)(\sqrt[4]{2y})][/tex]

Further simplifying

[tex]=71\sqrt[4]{x}-62\sqrt[4]{2y}[/tex]

Learn more about the expression:

https://brainly.com/question/13947055?referrer=searchResults

Answer:

Keep it simple: C

Step-by-step explanation:

ACCESS MORE
EDU ACCESS