Answer:
[tex]\displaystyle \Delta H = -2426\text{ kJ}[/tex]
Explanation:
To find the enthalpy change of the target reaction, we can use Hess's Law.
Reversing the third reaction yields:
[tex]\displaystyle \text{C$_3$H$_8$(g)} \longrightarrow 3\text{C(s)} + 4\text{H$_2$(g)}\;\;\;\;\;\Delta H = -106\text{ kJ}[/tex]
Multiplying the first reaction by three yields:
[tex]\displaystyle 3\text{C(s)} + 3\text{O$_2$(g)} \longrightarrow 3\text{CO$_2$}(g)}\;\;\;\;\; \Delta H = -1.18\times 10^3\text{ kJ}[/tex]
Multiplying the second reaction by four yields:
[tex]\displaystyle 4\text{H$_2$(g)} + 2\text{O$_2$(g)} \longrightarrow 4\text{H$_2$O($\ell$)} \;\;\;\;\; \Delta H = -1.14\times 10^3 \text{ kJ}[/tex]
Adding all equations yield:
[tex]\displaystyle \text{C$_3$H$_8$(g)} + 5\text{O$_2$(g)} \longrightarrow 3\text{CO$_2$(g)} + 4\text{H$_2$O($\ell$)} \;\;\;\;\; \Delta H = -2426\text{ kJ}[/tex]
Hence, the enthalpy change of the target reaction is -2426 kJ.