Respuesta :

  • n=6
  • r=3
  • Here a word exactly given so we apply combination

[tex]\\ \sf\longmapsto {}^nC_r=\dfrac{n!}{r!(n-r)!}[/tex]

[tex]\\ \sf\longmapsto {}^6C_3[/tex]

[tex]\\ \sf\longmapsto \dfrac{6!}{3!(6-3)!}[/tex]

[tex]\\ \sf\longmapsto \dfrac{6\times 5\times 4\times 3!}{3!3!}[/tex]

[tex]\\ \sf\longmapsto \dfrac{120}{3!}[/tex]

[tex]\\ \sf\longmapsto \dfrac{120}{6}[/tex]

[tex]\\ \sf\longmapsto 30[/tex]

Answer : -

nCr = n! ÷ (n - r)!r!

6C3 = 6! ÷ (6 - 3)!3!

6C3 = 6! ÷ 3!3!

6C3 = 6•5•4•3! ÷ 3!3!

6C3 = 6•5•4 ÷ 3!

6C3 = 5•4

6C3 = 20

ACCESS MORE