Respuesta :
Answer: [tex]\boldsymbol{2.376 \times 10^4}[/tex]
========================================================
Explanation:
Let's solve for 'a' in the original equation. Each x shown below indicates multiplication.
[tex](a \times 10^4)+(a \times 10^2) = 24240\\\\a(10^4+10^2) = 24240\\\\a(10000+100) = 24240\\\\a(10100) = 24240\\\\a = 24240/10100\\\\a = 2.4[/tex]
I used the distributive property to factor out the 'a' in the second step.
As a check so far,
[tex](a \times 10^4)+(a \times 10^2) = (2.4 \times 10^4)+(2.4 \times 10^2) = (24000)+(240) = 24240 \checkmark[/tex]
which shows we have the correct value for 'a'.
---------------
Once we determine the value of 'a', we can compute the expression your teacher wants.
[tex](a \times 10^4)-(a \times 10^2)\\\\(2.4 \times 10^4)-(2.4 \times 10^2)\\\\(24000)-(240)\\\\23760\\\\\boldsymbol{2.376 \times 10^4}[/tex]
The answer is 2.376 × 10⁴
Given:-
(a × 10⁴) + (a × 10²) = 24240
To Find:-
(a × 10⁴) - (a × 10²) = ?
Now,
a(10⁴ + 10²) = 24240
a(10000 + 100) = 24240
a(10100) = 24240
Divide 10100 from both side we get,
a(10100)/10100 = 24240/10100
a = 2.4
Here, The value of a is 2.4
So, substitute the value of a in equation
(a × 10⁴) - (a × 10²)
(2.4 × 10⁴) - (2.4 × 10²)
24000 - 240 = 23760 = 2.376 × 10⁴
Thus, The answer is 2.376 × 10⁴
-TheUnknownScientist 72