Respuesta :

Answer:

[tex] \huge \boxed{ \underline{ f(\sf-6)=\tt 8}}[/tex]

Step-by-step explanation:

Given polynomial:-

[tex] \bf : \sf \longmapsto \: f(x) = - x + 2[/tex]

When,

[tex] :\sf \longmapsto \: f( - 6)[/tex]

We need to find the value of:-

[tex] :\sf \longmapsto \: f( - 6)[/tex]

Solution:-

[tex]\bf : \sf \longmapsto \: f(x) = - x + 2[/tex]

Replace [tex]x[/tex] with[tex]-6[/tex] on the given Expression:

[tex]\bf : \sf \longmapsto \: f( - 6) = - (- 6) + 2[/tex]

Simplify:

Remove parenthesis of RHS of the given expression :

As we know (-) and (-) equals to (+),So,

[tex]\bf : \sf \longmapsto \: f( - 6) = + 6 + 2[/tex]

Simply add 6 and 2 of RHS:

[tex]\bf : \sf \longmapsto \: f( - 6) = 8[/tex]

Hence, the value of [tex]f(-6)[/tex] is [tex]\boxed{\bold{8}}[/tex] .

________________________________

I hope this helps!

Please let me know if you have any questions.I am joyous to help!

Given the function, [tex]f(x)[/tex] = -x + 2, [tex]f(-6)[/tex] = 8.

Value of Functions

To find the value of a function, plug in the value of x given into the equation of the function, and simplify.

Given:

[tex]f(x)[/tex] = -x + 2

To find, [tex]f(-6)[/tex], substitute x = -6 into [tex]f(x)[/tex] = -x + 2.

  • Thus:

[tex]f(-6)[/tex] = -(-6) + 2

[tex]f(-6)[/tex] = 6 + 2

[tex]f(-6)[/tex] = 8

Therefore, given the function, [tex]f(x)[/tex] = -x + 2, [tex]f(-6)[/tex] = 8.

Learn more about functions on:

https://brainly.com/question/5404467