Respuesta :
The shipping crane is an illustration of parallelogram.
The given parameters are:
- JL = 165.8
- JK = 110
- [tex]\angle JML = 50^o[/tex]
The Side Lengths
(a) Length JN
Point N is at the midpoint of length segment JL.
So, we have:
[tex]JN = \frac{JL}2[/tex]
[tex]JN = \frac{165.8}2[/tex]
[tex]JN = 82.9[/tex]
Hence, the value of length JN is 82.9
(b) Length LM
Side length LM is opposite length segment JK.
So, we have:
[tex]LM = JK[/tex] --- the opposite sides of parallelograms
[tex]LM = 110[/tex]
Hence, the value of length LM is 82.9
(c) Length LN
Point N is at the midpoint of length segment JL.
So, we have:
[tex]LN = JN[/tex]
[tex]LN = 82.9[/tex]
Hence, the value of length LN is 82.9
The Angles
(d) Angle JKL
Angle JKL is opposite angle JML.
So, we have:
[tex]\angle JKL = \angle JML[/tex] --- the opposite angles of parallelograms
[tex]\angle JKL = 50[/tex]
Hence, the value of angle JKL is 50 degrees
(e) Angle KLM
Angle KLM is adjacent angle JML.
So, we have:
[tex]\angle KLM + \angle JML =180[/tex] --- adjacent angles of parallelograms
This gives
[tex]\angle KLM + 50 =180[/tex]
Subtract 50 from both sides
[tex]\angle KLM =130[/tex]
Hence, the value of angle KLM is 130 degrees
(f) Angle MJK
Angle MJK is opposite angle KLM.
So, we have:
[tex]\angle MJK = \angle KLM[/tex] --- the opposite angles of parallelograms
[tex]\angle MJK = 130[/tex]
Hence, the value of angle MJK is 130 degrees
Read more about parallelograms at:
https://brainly.com/question/25483232