Shipping cranes can be used to load cargo onto ships. In ▱ JKLM, JL = 165.8, J
m ∟ JML = 50° Find the measure of each part of the crane.
HW 1: Find JN.
HW 2: Find LM.
HW 3: Find m ∟ JKL.
HW 5: Find m ∟ KLM.
HW 6: Find m∟ MJK.

Respuesta :

The shipping crane is an illustration of parallelogram.

The given parameters are:

  • JL = 165.8
  • JK = 110
  • [tex]\angle JML = 50^o[/tex]

The Side Lengths

(a) Length JN

Point N is at the midpoint of length segment JL.

So, we have:

[tex]JN = \frac{JL}2[/tex]

[tex]JN = \frac{165.8}2[/tex]

[tex]JN = 82.9[/tex]

Hence, the value of length JN is 82.9

(b) Length LM

Side length LM is opposite length segment JK.

So, we have:

[tex]LM = JK[/tex] --- the opposite sides of parallelograms

[tex]LM = 110[/tex]

Hence, the value of length LM is 82.9

(c) Length LN

Point N is at the midpoint of length segment JL.

So, we have:

[tex]LN = JN[/tex]

[tex]LN = 82.9[/tex]

Hence, the value of length LN is 82.9

The Angles

(d) Angle JKL

Angle JKL is opposite angle JML.

So, we have:

[tex]\angle JKL = \angle JML[/tex] --- the opposite angles of parallelograms

[tex]\angle JKL = 50[/tex]

Hence, the value of angle JKL is 50 degrees

(e) Angle KLM

Angle KLM is adjacent angle JML.

So, we have:

[tex]\angle KLM + \angle JML =180[/tex] --- adjacent angles of parallelograms

This gives

[tex]\angle KLM + 50 =180[/tex]

Subtract 50 from both sides

[tex]\angle KLM =130[/tex]

Hence, the value of angle KLM is 130 degrees

(f) Angle MJK

Angle MJK is opposite angle KLM.

So, we have:

[tex]\angle MJK = \angle KLM[/tex] --- the opposite angles of parallelograms

[tex]\angle MJK = 130[/tex]

Hence, the value of angle MJK is 130 degrees

Read more about parallelograms at:

https://brainly.com/question/25483232

Ver imagen MrRoyal