Respuesta :

The maximized value of the function is (c) 119/2

Maximization problem

Maximization problems are used to determine the optimal solution of a linear programming model

Objective function

The objective function is given as:

[tex]P(x,y) = 11x + 10y[/tex]

Constraints

The constraints are given as:

[tex]22x + 2y \le 68[/tex]

[tex]8x + 16y \le 68[/tex]

[tex]x,y\ge 0[/tex]

Graph

See attachment for the graph of the constraints

From the graph, the optimal solution is: (2.83, 2.83)

So, the maximized value is:

[tex]P(x,y) = 11x + 10y[/tex]

[tex]P =11 \times 2.833 + 10 \times 2.833[/tex]

[tex]P =59.493[/tex]

Approximate

[tex]P =59.5[/tex]

Rewrite as a fraction

[tex]P =\frac{119}{2}[/tex]

Hence, the maximized value of the function is (c) 119/2

Read more about maximization problem at:

https://brainly.com/question/16826001

Ver imagen MrRoyal