Respuesta :
Answer:
Step-by-step explanation:
To find the breadth use Pythagorean theorem
Breadth² = diagonal² - length²
= 34² - 30²
= 1156 - 900
= 256
Breadth = √256 = 16 cm
Breadth = 16 cm
Perimeter = 2*(length + breadth) = 2*(30 + 16) = 2*46 = 92 cm
Area = length * breadth = 30 *16 = 480 cm²
S O L U T I O N:
Let's assume that the given rectangle be ABCD and in that let ∆ABC be the right angled triangle formed from it.
Now we've been asked to find out the breadth. By applying Pythagoras theorem here in our rectangle ABCD we have,
- length (l) = 30cm
- diagonal (d) = 34cm
- breadth (b) = ?
[tex]:\implies\tt{ {b}^{2} = {d}^{2} - {l}^{2} }[/tex]
[tex]:\implies\tt{ {b}^{2} = {34}^{2} - {30}^{2} }[/tex]
[tex]:\implies\tt{ {b}^{2} = 1156 - 900}[/tex]
[tex]:\implies\tt{ {b}^{2} = 256}[/tex]
[tex]:\implies\tt{b = \sqrt{256} }[/tex]
[tex]:\implies\tt{b = 16}[/tex]
For the formula of area (a) = ? it is given by,
[tex]:\implies\tt{a = l \times b}[/tex]
[tex]:\implies\tt{a = 30 \times 16}[/tex]
[tex]:\implies\tt{a = 480 {cm}^{2} }[/tex]
For the formula of perimeter (p) = ? is given by,
[tex]:\implies\tt{p = 2 \times (l + b)}[/tex]
[tex]:\implies\tt{p = 2 \times (30 + 16)}[/tex]
[tex]:\implies\tt{p = 2 \times 46}[/tex]
[tex]:\implies\tt{p = 92cm}[/tex]
- The breadth, area and perimeter of rectangle is 16, 480cm² and 92cm.