Respuesta :
Answer:
We have,
\frac{63(p^4 + 5p^3 - 24p^2)}{ 9p(p + 8)}
=\frac{63p^2(p^2 + 5p - 24)}{9p(p + 8}
=\frac{7p(p^2 + 5p - 24)}{(p + 8)}
Splitting the middle term, we get
=\frac{7p(p^2 + 8p-3p - 24)}{(p + 8)}
=7p[\frac{p(p+8)-3(p+8)}{(p+8)} ]
=7p[\frac{(p+8)(p-3)}{p+8}]
=7p(p-3)
Hence the solution is 7p(p-3).
Answer:
(21/3)p(p-3) or
(21/3)p^2 - 21p
Step-by-step explanation:
63(p^4 + 5p^3 – 24p^2)/(9p(p + 8))
63p^2(p^2 + 5p – 24)/(9p(p + 8)) [Factor (p^2 + 5p-24) to (p+8)(p-3)]
63p^2(p+8)(p-3))/(9p(p + 8)) [The (p+8) terms cancel]
63p^2(p-3))/(9p) [Cancel 1 p]
63p(p-3))/(9) [Divide by 9]
(21/3)p(p-3) or
(21/3)p^2 - 21p