a line whose perpendicular distance from the origin is 4 units and the slope of perpendicular is 2÷3. Find the equation of the line.​

Respuesta :

gmany

Answer:

[tex]\huge\boxed{y=\dfrac{2}{3}x-\dfrac{4\sqrt{13}}{3}\ \vee\ y=\dfrac{2}{3}x+\dfrac{4\sqrt{13}}{3}}[/tex]

Step-by-step explanation:

The equation of a line:

[tex]y=mx+b[/tex]

We have

[tex]m=\dfrac{2}{3}[/tex]

substitute:

[tex]y=\dfrac{2}{3}x+b[/tex]

The formula of a distance between a point and a line:

General form of a line:

[tex]Ax+By+C=0[/tex]

Point:

[tex](x_0,\ y_0)[/tex]

Distance:

[tex]d=\dfrac{|Ax_0+By_0+C|}{\sqrt{A^2+b^2}}[/tex]

Convert the equation:

[tex]y=\dfrac{2}{3}x+b[/tex]     |subtract [tex]y[/tex] from both sides

[tex]\dfrac{2}{3}x-y+b=0[/tex]    |multiply both sides by 3

[tex]2x-3y+3b=0\to A=2,\ B=-3,\ C=3b[/tex]

Coordinates of the point:

[tex](0,\ 0)\to x_0=0,\ y_0=0[/tex]

substitute:

[tex]d=4[/tex]

[tex]4=\dfrac{|2\cdot0+(-3)\cdot0+3b|}{\sqrt{2^2+(-3)^2}}\\\\4=\dfrac{|3b|}{\sqrt{4+9}}[/tex]

[tex]4=\dfrac{|3b|}{\sqrt{13}}\qquad|[/tex]    |multiply both sides by [tex]\sqrt{13}[/tex]

[tex]4\sqrt{13}=|3b|\iff3b=-4\sqrt{13}\ \vee\ 3b=4\sqrt{13}[/tex]   |divide both  sides by 3

[tex]b=-\dfrac{4\sqrt{13}}{3}\ \vee\ b=\dfrac{4\sqrt{13}}{3}[/tex]

Finally:

[tex]y=\dfrac{2}{3}x-\dfrac{4\sqrt{13}}{3}\ \vee\ y=\dfrac{4\sqrt{13}}{3}[/tex]