Respuesta :

Answer:

[tex]\boxed{\sf r=33\sqrt{2}}[/tex]

Step-by-step explanation:

[tex]\sf \cfrac{\sqrt{2}}{3}\:r+1=23[/tex]

Subtract 1 from both sides:

[tex]\sf \cfrac{\sqrt{2}}{3}\: r+1-1=23-1[/tex]

Simplify 23 -1 =22

[tex]\sf \cfrac{\sqrt{2} }{3} \: r=22[/tex]

Now, Multiply both sides by 3:

[tex]\sf 3\times \cfrac{\sqrt{2r}}{3}=22\times \:3[/tex]

[tex]\sf \sqrt{2}\: r =22\times 3[/tex]

Simplify 22 * 3 =66

[tex]\sf \sqrt{2}r=66[/tex]

Now, Divide both sides by √(2):

[tex]\sf \cfrac{\sqrt{2}r}{\sqrt{2}}=\cfrac{66}{\sqrt{2}}[/tex]

[tex]\leadsto\sf \cfrac{\sqrt{2}r}{\sqrt{2}}=r[/tex]

[tex]\leadsto\sf \cfrac{66}{\sqrt{2}}= 33\sqrt{2}[/tex]

[tex]\sf r=33\sqrt{2}[/tex]

________________________________

RELAXING NOICE
Relax