Respuesta :

  • BK||SP

Hence,

Distance of B and P on x axis= Distance of K and S on y axis

[tex]\\ \sf{:}\longrightarrow 8-5=3[/tex]

.Hence.

K(0,-12+2)=K(0,-9)

msm555

coordinate of K is (0,7.5) or (0,[tex]\frac{15}{2}[/tex]}

and

scale factor=[tex]\frac{5}{8}[/tex]

Answer:

solution given:

O(0,0)

B(5,0)

P(8,0)

K(0,x)

S(0,-12)

and

ΔBOK [tex]\sim[/tex] ΔPOS

Now

By using the distance formula

d=[tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

OB=[tex]\sqrt{(5-0)^2-(0-0)^2} =5[/tex]

OP=[tex]\sqrt{(8-0)^2-(0-0)^2} =8[/tex]

OK=[tex]\sqrt{(0-0)^2-(x-o)^2} =x[/tex]

OS=[tex]\sqrt{(0-0)^2-(-12-0)^2} =12[/tex]

since

ΔBOK is similar to ΔPOS

So their side will be proportional.

[tex]\frac{OK}{OS}=\frac{OB}{OP}[/tex]

taking two proportional only

[tex]\frac{x}{12} =\frac{5}{8}[/tex]

[tex]x=\frac{ 12*5}{8}=\frac{15}{2}[/tex]=7.5

Now

coordinate of K is (0,7.5) or (0,[tex]\frac{15}{2}[/tex]}

and

Scale factor = Dimensions of the new shape ÷ Dimensions of the original shape.

scale factor=[tex]\frac{OB}{OP}=\frac{5}{8}[/tex]

Ver imagen msm555
RELAXING NOICE
Relax