Hi there!
Begin by converting 104.5 km/h to m/s.
[tex]\frac{104.5km}{hr} * \frac{hr}{3600 s}* \frac{1000m}{ km} = 29.028 m/s[/tex]
Recall the definition of work:
[tex]\large\boxed{W = \Delta KE = Fdcos\theta}}[/tex]
AND:
[tex]\large\boxed{W = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2}[/tex]
The work done in this situation is due to the friction force:
[tex]F = \mu mg\\\\W = \mu mgd(cos180) \\W = -\mu mgd[/tex]
Now, using the change in kinetic energy, we can solve:
[tex]-\mu mgd = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2[/tex]
Cancel out the mass.
[tex]-\mu gd = \frac{1}{2}v_f^2 - \frac{1}{2}v_i^2[/tex]
Rearrange for a working equation:
[tex]d = \frac{\frac{1}{2}v_f^2 - \frac{1}{2}v_i^2}{-\mu g}[/tex]
Plug in the given values:
[tex]d = \frac{\frac{1}{2}(14.51)^2 - \frac{1}{2}(29.028)^2}{-(.120)(9.8)}[/tex]
Solve:
[tex]d = \frac{\frac{1}{2}(14.51)^2 - \frac{1}{2}(29.028)^2}{-(.120)(9.8)} = \boxed{268.74 m}[/tex]