Respuesta :

Answer:

[tex]\left \{ {{p=3} \atop {q=1}} \right.[/tex]

Step-by-step explanation:

First, we'll expand [tex](x-p)^2+q[/tex]. It's equal to [tex]x^2-2px+p^2+q[/tex].

Then, we'll compare this to [tex]x^2-6x+10[/tex].

  • The terms [tex]x^2[/tex] are the same
  • The terms with [tex]x[/tex] are [tex]-2px[/tex] and [tex]-6x[/tex] in the two expressions respectively, so they must be equal. We have [tex]-2px=-6x[/tex], so p=3.
  • The remaining terms are [tex](p^2+q)[/tex] and [tex]10[/tex]. They must be equal. We have [tex]p^2+q=10[/tex]. Substituting in [tex]p=3[/tex], we get [tex]9+q=10[/tex], so q=1.

Answer:

p = 3, q = 1

Step-by-step explanation:

Using the method of completing the square

add/ subtract ( half the coefficient of the x- term )² to x² - 6x

x² + 2(- 3)x + 9 - 9 + 10

= (x - 3)² + 1 ← in the form (x - p)² + q

with p = 3 and q = 1

RELAXING NOICE
Relax