Respuesta :
Answer:
[tex]\displaystyle \tan \frac{\theta}{2} = -\frac{1}{2}[/tex]
Step-by-step explanation:
We are given that:
[tex]\displaystyle \cos \theta = \frac{3}{5}\text{, where } \frac{3\pi}{2} < \theta < 2\pi[/tex]
(The fourth quadrant).
And we want to find the value of:
[tex]\displaystyle \tan \frac{\theta}{2}[/tex]
We can start by letting x = θ/2. Then θ = 2x. Hence:
[tex]\displaystyle \cos 2x = \frac{3}{5}[/tex]
From the double-angle identity, solve for cosine:
[tex]\displaystyle \begin{aligned} \cos 2x = 2\cos^2 x - 1 & = \frac{3}{5} \\ \\ \cos^2 x & = \frac{4}{5} \\ \\ \cos x& = \pm\frac{2}{\sqrt{5}} \Rightarrow -\frac{2}{\sqrt{5}}\end{aligned}[/tex]
Because:
[tex]\displaystyle \displaystyle \frac{3\pi}{2} < \theta < 2\pi\text{, then } \frac{3\pi}{2} < 2x< 2\pi\Rightarrow \frac{3\pi}{4} < x < \pi[/tex]
Hence, cosine is always negative, and sine is always positive.
Solve for sine using the Pythagorean Identity:
[tex]\displaystyle \begin{aligned} \cos^2 x + \sin^2 x & = 1 \\ \\ \left(-\frac{2}{\sqrt{5}}\right)^2 + \sin^2 x & = 1 \\ \\ \sin^2 x & = \frac{1}{5} \\ \\ \sin x & = \pm\frac{1}{\sqrt{5}} \Rightarrow \frac{1}{\sqrt{5}} \end{aligned}[/tex]
Finally, by definition:
[tex]\displaystyle \tan x = \frac{\sin x}{\cos x}[/tex]
Substitute and evaluate:
[tex]\displaystyle \begin{aligned} \tan x & = \frac{\left(\dfrac{1}{\sqrt{5}}\right)}{\left(-\dfrac{2}{\sqrt{5}}\right)} \\ \\ & = -\frac{1}{2} \end{aligned}[/tex]
And because x = θ/2, in conclusion:
[tex]\displaystyle \tan \frac{\theta}{2} = -\frac{1}{2}[/tex]