The surface is parameterized by
[tex]\vec s(u,v) = x(u, v) \, \vec\imath + y(u, v) \, \vec\jmath + z(u, v)) \, \vec k[/tex]
and the normal to the surface is given by the cross product of the partial derivatives of [tex]\vec s[/tex] :
[tex]\vec n = \dfrac{\partial \vec s}{\partial u} \times \dfrac{\partial \vec s}{\partial v}[/tex]
It looks like you're given
[tex]\begin{cases}x(u, v) = u + v\\y(u, v) = 2u^2\\z(u, v) = u - v\end{cases}[/tex]
Then the normal vector is
[tex]\vec n = \left(\vec\imath + 4u \, \vec\jmath + \vec k\right) \times \left(\vec \imath - \vec k\right) = -4u\,\vec\imath + 2 \,\vec\jmath - 4u\,\vec k[/tex]
Now, the point (2, 2, 0) corresponds to u and v such that
[tex]\begin{cases}u + v = 2\\2u^2 = 2\\u - v = 0\end{cases}[/tex]
and solving gives [tex]u = v = 1[/tex], so the normal vector at the point we care about is
[tex]\vec n = -4\,\vec\imath+2\,\vec\jmath-4\,\vec k[/tex]
Then the equation of the tangent plane is
[tex]\left(-4\,\vec\imath + 2\,\vec\jmath - 4\,\vec k\right) \cdot \left((x-2)\,\vec\imath + (y-2)\,\vec\jmath + (z-0)\,\vec k\right) = 0[/tex]
[tex]-4(x-2) + 2(y-2) - 4z = 0[/tex]
[tex]\boxed{2x - y + 2z = 2}[/tex]