Using inverse functions, it is found that:
[tex]g^{-1}(1) = k\frac{\pi}{2}, k = \pm 1, \pm 3, \pm 5, ...[/tex]
The function given is:
[tex]f(x) = y = \sin{x} + 1[/tex]
To find the inverse, we exchange x and y, and isolate y, hence:
[tex]x = \sin{y} + 1[/tex]
[tex]x - 1 = \sin{y}[/tex]
[tex]y = \arcsin{(x - 1)}[/tex]
Then:
[tex]g^{-1}(x) = \arcsin{(x - 1)}[/tex]
At x = 1:
[tex]g^{-1}(1) = \arcsin{(1 - 1)} = k\frac{\pi}{2}, k = \pm 1, \pm 3, \pm 5, ...[/tex]
To learn more about inverse functions, you can take a look at https://brainly.com/question/25897382