Respuesta :

Using inverse functions, it is found that:

[tex]g^{-1}(1) = k\frac{\pi}{2}, k = \pm 1, \pm 3, \pm 5, ...[/tex]

The function given is:

[tex]f(x) = y = \sin{x} + 1[/tex]

To find the inverse, we exchange x and y, and isolate y, hence:

[tex]x = \sin{y} + 1[/tex]

[tex]x - 1 = \sin{y}[/tex]

[tex]y = \arcsin{(x - 1)}[/tex]

Then:

[tex]g^{-1}(x) = \arcsin{(x - 1)}[/tex]

At x = 1:

[tex]g^{-1}(1) = \arcsin{(1 - 1)} = k\frac{\pi}{2}, k = \pm 1, \pm 3, \pm 5, ...[/tex]

To learn more about inverse functions, you can take a look at https://brainly.com/question/25897382

RELAXING NOICE
Relax