the sum of three numbers is 182, the second is 6 times bigger than the first and the third is 14 times bigger than the second number, what are those numbers?​

Respuesta :

Answer:

The numbers are [tex]2,12,168[/tex]

Step-by-step explanation:

Let the numbers be [tex]a,b,c[/tex]

We have

The sum of three numbers is [tex]182[/tex]

[tex]a+b+c=182-----eqn1[/tex]

The second is [tex]6[/tex] times bigger than the first

[tex]b=6a-----eqn2[/tex]

The third is [tex]14[/tex] times bigger than the second number

[tex]c=14b-------eqn3[/tex]

Substituting in eqn 3

[tex]c=14\times 6a=84a ----eqn4[/tex]

Substituting in eqn 1

[tex]a+6a+84a=182\\\\91a=182\\\\a=2[/tex]

Substituting in eqn 2

[tex]b=6\times2=12[/tex]

Substituting in eqn 3

[tex]c=14\times12=168[/tex]

The numbers are [tex]2,12,168[/tex]

The first number is a , the second number is b , the third number is c

( 0 < a < b < c )

The sum of three numbers is 182

⇒ a + b + c = 182    (1)

The second is 6 times bigger than the first

⇒ b = 6a                 (2)

The third is 14 times bigger than the second number

⇒ c = 14b = 14.6a = 84a               (3)

(1),(2),(3): ⇒ a + 6a + 84a = 182

              ⇒ 91a = 182

              ⇒ a = 2

              ⇒ b = 6a = 6.2 = 12

              ⇒ c = 14b = 14.12 = 168

Those numbers are 2 , 12 , 168

ok done. Thank to me :>

RELAXING NOICE
Relax