Respuesta :
The sum of the given series can be found by simplification of the number
of terms in the series.
- A is approximately 2020.022
Reasons:
The given sequence is presented as follows;
A = 1011 + 337 + 337/2 + 1011/10 + 337/5 + ... + 1/2021
Therefore;
- [tex]\displaystyle A = \mathbf{1011 + \frac{1011}{3} + \frac{1011}{6} + \frac{1011}{10} + \frac{1011}{15} + ...+\frac{1}{2021}}[/tex]
The n + 1 th term of the sequence, 1, 3, 6, 10, 15, ..., 2021 is given as follows;
- [tex]\displaystyle a_{n+1} = \mathbf{\frac{n^2 + 3 \cdot n + 2}{2}}[/tex]
Therefore, for the last term we have;
- [tex]\displaystyle 2043231= \frac{n^2 + 3 \cdot n + 2}{2}[/tex]
2 × 2043231 = n² + 3·n + 2
Which gives;
n² + 3·n + 2 - 2 × 2043231 = n² + 3·n - 4086460 = 0
Which gives, the number of terms, n = 2020
[tex]\displaystyle \frac{A}{2} = \mathbf{ 1011 \cdot \left(\frac{1}{2} +\frac{1}{6} + \frac{1}{12}+...+\frac{1}{4086460} \right)}[/tex]
[tex]\displaystyle \frac{A}{2} = 1011 \cdot \left(1 - \frac{1}{2} +\frac{1}{2} - \frac{1}{3} + \frac{1}{3}- \frac{1}{4} +...+\frac{1}{2021}-\frac{1}{2022} \right)[/tex]
Which gives;
[tex]\displaystyle \frac{A}{2} = 1011 \cdot \left(1 - \frac{1}{2022} \right)[/tex]
[tex]\displaystyle A = 2 \times 1011 \cdot \left(1 - \frac{1}{2022} \right) = \frac{1032231}{511} \approx \mathbf{2020.022}[/tex]
- A ≈ 2020.022
Learn more about the sum of a series here:
https://brainly.com/question/190295
A is equal to 1,685.00049.
Given that A = 1011 + 337 + 337/2 +1011/10 + 337/5 + ... + 1/2021, the following calculation must be performed to determine the result of this operation:
- 337/2 = 168.5
- 1011/10 = 101.1
- 337/5 = 67.4
- 1/2021 = 0.00049
- 1011 + 337 + 168.5 + 101.1 + 67.4 + 0.00049 = A
- 1685.00049 = A
Therefore, A is equal to 1,685.00049.
Learn more about maths in https://brainly.com/question/25273534
Otras preguntas
