Respuesta :

Answer:

Approximately [tex]5.11 \times 10^{-19}\; {\rm J}[/tex].

Explanation:

Since the result needs to be accurate to three significant figures, keep at least four significant figures in the calculations.

Look up the Rydberg constant for hydrogen: [tex]R_{\text{H}} \approx 1.0968\times 10^{7}\; {\rm m^{-1}[/tex].

Look up the speed of light in vacuum: [tex]c \approx 2.9979 \times 10^{8}\; {\rm m \cdot s^{-1}}[/tex].

Look up Planck's constant: [tex]h \approx 6.6261 \times 10^{-34}\; {\rm J \cdot s}[/tex].

Apply the Rydberg formula to find the wavelength [tex]\lambda[/tex] (in vacuum) of the photon in question:

[tex]\begin{aligned}\frac{1}{\lambda} &= R_{\text{H}} \, \left(\frac{1}{{n_{1}}^{2}} - \frac{1}{{n_{2}}^{2}}\right)\end{aligned}[/tex].

The frequency of that photon would be:

[tex]\begin{aligned}f &= \frac{c}{\lambda}\end{aligned}[/tex].

Combine this expression with the Rydberg formula to find the frequency of this photon:

[tex]\begin{aligned}f &= \frac{c}{\lambda} \\ &= c\, \left(\frac{1}{\lambda}\right) \\ &= c\, \left(R_{\text{H}}\, \left(\frac{1}{{n_{1}}^{2}} - \frac{1}{{n_{2}}^{2}}\right)\right) \\ &\approx (2.9979 \times 10^{8}\; {\rm m \cdot s^{-1}}) \\ &\quad \times (1.0968 \times 10^{7}\; {\rm m^{-1}}) \times \left(\frac{1}{2^{2}} - \frac{1}{8^{2}}\right)\\ &\approx 7.7065 \times 10^{14}\; {\rm s^{-1}} \end{aligned}[/tex].

Apply the Einstein-Planck equation to find the energy of this photon:

[tex]\begin{aligned}E &= h\, f \\ &\approx (6.6261 \times 10^{-34}\; {\rm J \cdot s}) \times (7.7065 \times 10^{14}\; {\rm s^{-1}) \\ &\approx 5.11 \times 10^{-19}\; {\rm J}\end{aligned}[/tex].

(Rounded to three significant figures.)

ACCESS MORE